img Thomas Henry Huxley; A Sketch Of His Life And Work  /  Chapter 4 EARLY DAYS IN LONDON | 23.53%
Download App
Reading History

Chapter 4 EARLY DAYS IN LONDON

Word Count: 6408    |    Released on: 01/12/2017

Society-Translating, Reviewing, and Lecturing-Ascidians-Molluscs and the Ar

nd museums, work up the observations he had made on the Rattlesnake into serious and substantial contributions to science. His request was granted, largely by the aid of his old chief, Sir W. Burnett, who continued to take the most useful interest in the young man he had originally nominated to the service. In a letter to him Huxley described the investigations which he desired to continue as being chiefly those on "the anatomy of certain Gasteropod and Pteropod Mollusca, of Firola and Atlantis, of Salpa and Pyrosoma, of two new Ascidians, namely, Appendicularia and Doliolum, of Sagitta and certain Annelids, of the auditory and circulatory organs of c

t by their common experience as navy surgeons, he began an attachment which, strengthened by like biological aspirations, grew closer as their lives went on. In the first year after his return, in the autumn of 1851, he made the acquaintan

short the discussion by ordering me to join a ship, which thing I declined to do, and, as Rastignac, in the Père Goriot, says to Paris, I said to London, à nous deux." This light phrase conceals a courageous and momentous decision. He was absolutely without private resources, and having abandoned his professional work he had no salary of any kind. For a year or so he supported

would not look at either of us. I say fortunately, not from any lack of respect for the University of Toronto; but because I soon made up my m

eral public. The first of these lectures, and probably the first given in public by Huxley, occurred on April 30, 1852, and was entitled "Animal Individuality." The problem as to what is meant by an individual had been raised in his mind by consideration of many of the forms of marine life, notably compound structures like the Portuguese man-of-war, and creatures like the salps, which form floating chains often many yards in length. He explained that the word individual covers at least three quite different kinds of conceptions. There is, first, what he described as arbitrary individuality, an individuality which is given by the mind of the observer and does not actually exist in the thing considered. Thus a landscape is in a sense an individual thing, but only so far as it is a particular part of the surface of the earth, isolated for the time in the mind of the person looking at it. If the observer shift his position, the range of the landscape alters and becomes something else. Next there are material, or practically accidental individual things, such as crystals or pieces of stone; and, lastly, there are living individuals which, as he pointed out, were cycles. All living things are born into the world, grow up, and die, and it was to the cycle of life, from the egg to the adult which produces eggs, that he gave the name individual. In a simple animal like Hydra there is no difficulty in accepting this plain definition of individuality; but Huxley went on to compare with Hydra a compound creature like the Portuguese man-of-war, which really is composed of a colony of Hydra-like creatures, the different members of the colony being more or less altered to serve different functions. All these have come from the branching of a single simple creature produced from an egg, and to the whole colony Huxley gave the name of zo?logical individual. The salps give a still wider interpretation to this view of indi

tructure of plants, noticed that their bodies were made up of little cases with firm walls; these he called cells, and declared that the whole body of the plant was composed of cells. As the walls of these cells were the most obvious and visible feature, it was supposed that they were the most essential part of the structure, and there was some difficulty in applying the cellular theory to the bodies of animals, as in most cases there are no easily visible cell-walls in animal tissues. As the result of his own observation, and from his reading of the work of others, Huxley laid down in the clearest way what is now accepted by everyone-that the presence of walls is of minor importance, and that it is the slimy contents of the cells, what is called "protoplasm," that is the important element. He dec

yal Society, which contained the results of Huxley's observations of the intere

f Chamisso, De Animalibus Quibusdam e Classe Vermium Linn?ana. In this work there were set forth, for the first time, the singular phenomena presented by the reproductive processes of these animals,-phenomena so strange, and so utterly

uld give rise to a second generation totally unlike itself, and this second generation would reproduce, not its kind, but the first generation; such an alternation of generations he stated to occur among the salps. Huxley had an excellent opportunity to study this question at Cape York in November, 1849. "For a time the sea was absolutely crowded with Salp?, in all stages of growth, and of size very convenient for examination." He was able to verify the general truth of Chamisso's statement. The aggregate form of Salpa always gives rise to the solitary salps, and the solitary salps always give rise to chains of the aggregate salps. But the process of reproduction he shewed to be quite different in the two cases. The solitary salp produces in its interior a little stolon or diverticulum which contains an outgrowth from the circulatory system, and this stolon gradually becomes pinched off into the member

nvestigation of the structure of Salpa. On one occasion only the Rattlesnake came across a qu

ata floated deep, and it was only with difficulty that some were procured for examination and placed in a bucketful of sea-water. The phosphorescence was intermittent, periods of darkness alternating with periods of brilliancy. The light commenced in one spot, apparently on the surface of one of the zo?ids, and gradually spread from this as a centre in all directions; t

ther distinguished zo?logist, had declared that "the relation of this animal with the Pteropods (a peculiar group of molluscs) is unmistakable"; while Müller, a prince among German anatomists, confessed that "he did not know in what division of the animal kingdom to place this creature." Huxley shewed that it possessed all the characteristic features of the Ascidians, the same arrangement of organs, the same kind of nervous system, a respiratory chamber formed from the fore part of the alimentary canal, and a peculiar organ running along the pharynx which Huxley called the endostyle and which is one of the most striking peculiarities of the whole group. The real nature of the tail was Huxley's most striking discovery. He pointed out that ordinary Ascid

of an important stage in the ancestry of vertebrate animals, and, therefore, of man himself. There are few more interesting chapters in genealogical zo?logy than those which reveal the relationship between Amphioxus and fish on the one hand, and Ascidians on the other; for fish are vertebrates, and Ascidians, on the old view, are lowly invertebrates. The details of these relationsh

splays in a striking fashion his method of handling anatomical facts, and deducing from them the great underlying principles of construction. The shell-fish with which he dealt specially were those distinguished as cephalous, because, unlike creatures such as the oyster and mussel, th

homologues in the other. The dorsal integument of a Doris and the cloak of a whelk are both called 'mantle,' without any evidence to show that they are really homologous. Nor do very much more

ch. Having had no opportunity to make such embryological studies for himself, he fell back on numerous accounts of development by K?lliker, Van Beneden, Gegenbauer, and others, and so gradually arrived at a conception of what he called the "archetype" of the cephalous molluscs. As the word archetype was borrowed from old metaphysical ideas dating back to the time of Plato, he took care to state that what he meant by it was no more than a form embodying all that could be affirmed equally respecting every single kind of cephalous mollusc, and by no means an "idea" upon which it could be supposed that animal forms had been modelled. He described this archetype, and showed the condition of th

, a schematic mollusc, is employed in order to explain the relations of the different structures found in different groups of molluscs to one another. Lankester's schematic mollusc differs from Huxley's archetypal mollusc only as a finished modern piece of mechanism, the final result of years of experiment, differs from the original invention. The method of comparing the schematic mollusc with the different divergent forms in different groups is identical, and yet, while the ideas of Darwin are accepted in every line of Lankester's work, Huxley was writing six years before the publication of The Origin of Species. There was growing up in Huxley's mind, partly from his own attempts to arrange the anatomical facts he discovered in an intelligible series, the ide

rphosis takes place in this group. There is no progression from a lower to a higher type, but merely a more or less complete evolution of one type. It may indeed be a matter of very grave consideration whether true anamorphosis ever occurs in t

rtial quotation, or reference to the kind of ideas found in papers such as this memoir by Huxley. The comparison between the types of the great groups and the combining proportions of the chemical elements shows clearly that Huxley regarded the structural plans of the great groups as properties necessary and inherent in these groups, just as the property of a chemical eleme

udy of their embryonic development. Such a trace of a common plan he had himself suggested when he compared the foundation-membranes of the Medus? with the first foundation-membranes of vertebrate embryos. This was going a long way towards modern ideas; but he stopped short, and gave no hint that he believed in the possibility of the development of one plan from a lower or simpler plan. The second lecture dealt with the kind of ideas which were crystallised in the popular but striking work of Chambers, entitled Vestiges of Creation. Chambers attacked the theological view that all animals and plants had been created at the beginning of the world, and maintained that geological evidence showed the occurrence of a progressive development of animal life. Huxley, like all zo?logists and geologists who knew anything of the occurrence of fossils in the rocks of past ages, agreed with the general truth

he Metropolitan School of Science Applied to Mining and the Arts, vacated these on his appointment to the Chair of Natural History in the University of Edinburgh, and Sir H. De La Beche, th

id not care for fossils, and that I should give up natural history as soon as I could get a physiological

suitable income was found for him. His official duties were at first in the Geological Museum of the Survey, but were distinguished from those of the special Pal?ontologist, Mr. Harvey. His income was now assured, and for the rest of his life, until towards its close, when he retired to

the Royal Institution, choosing as the title of his first two courses of lectures Physiology and

ENRY HUX

ion from Natural Scie

the publication of his great work on oceanic hydrozoa by the Ray Society was the last piece of important work he wrote upon any anatomical subject apart from vertebrates. His work in connection with the Geological Survey naturally attracted his attention most closely to vertebrates, and, towards the close of the fifties, he was led to make a special study of vertebrate embryology, a subject which the investigations of K?lliker and others in Germany were bringing into prominence. The first result of this new direction of his enquiries was embodied in a Croonian Lecture delivered in 1858 'On the Theory of the Vertebrate Skull.' Sir Richard Owen, who was at that time the leading vertebrate anatomist in England, had given his support to an extremely complicated view of the skull as being formed of a series of expanded vertebr? moulded together. The theory was really a legacy from an old German school of which the chief members were Goethe, the poet, and Oken, a naturalist, who was more of a metaphysical philosopher than of a morphologist. Huxley pointed out the futility of attempting to rega

ts direct scientific value, this lecture was of importance as marking the place to which Huxley had attained in the scientific world. Two years later, it is true, the London Times, referring to a famous debate at a meeting of the British Association at Oxford, spoke of him as "a Mr. Huxley"; but in the scientific world he w

nte

Download App
icon APP STORE
icon GOOGLE PLAY