img A Manual of Elementary Geology  /  Chapter 1 ON THE DIFFERENT CLASSES OF ROCKS. | 2.63%
Download App
Reading History
A Manual of Elementary Geology

A Manual of Elementary Geology

Author: Charles Lyell
img img img

Chapter 1 ON THE DIFFERENT CLASSES OF ROCKS.

Word Count: 4794    |    Released on: 06/12/2017

ratification and imbedded fossils - Volcanic rocks, with and without cones and craters - Plutonic rocks, and their relation to the volcanic - Meta

kind would relate exclusively to the mineral kingdom, and to the various rocks, soils, and metals, which occur upon the surface of the earth, or at various depths beneath it. But, in pursuing such researches, we soon find ourselves led on to consider the successive changes which have taken place in the former state of the

n their present form, and in their present position. The geologist soon comes to a different conclusion, discovering proofs that the external parts of the earth were not all produced in the beginning of things, in the state in which we now behold them, nor in an instant of time. On the contrary, he can show that

aid, that such a thickness is no more than 1/400 part of the distance from the surface to the centre. The remark is just; but although the dimensions of such a crust are, in truth, insignificant when compared to the entire globe, yet they are vast, and of magnificent extent in relation to man, and to the o

he term, and some have even brought peat under this denomination. Our older writers endeavoured to avoid offering such violence to our language, by speaking of the component materials of the earth as consisting of rocks and soils. But there is often so insensible a passage from a soft and incoherent state to that of stone, that geolo

in the second to their relative age. I shall therefore begin by endeavouring briefly to explain to the student how all rocks may be divided into four great

s natural, are the aqueous and volcanic, or the products of

ut or strewed over a given surface; and we infer that these strata have been generally spread out by the action of water, from what we daily see taking place near the mouths of rivers, or on the land during temporary inundations. For, whenever a running stream charged with mu

; still lower a bed of shell-marl, alternating with peat or sand, and then other beds of marl, divided by layers of clay. Now, if a second pit be sunk through the same continuous lacustrine formation, at some distance from the first, nearly the same series of beds is commonly met wit

h have some character in common, whether of origin, age, or composition. Thus we speak of stratified and unstratifi

les in length and breadth. When the periodical inundations subside, the river hollows out a channel to the depth of many yards through horizontal beds of clay and sand, the ends of which are seen exposed in perpendicular cliffs. These bed

ains. This mud is stratified, the thin layer thrown down in one season differing slightly in colour from that of

d often far from seas, lakes, and rivers, we meet with layers of rounded pebbles composed of different rocks mingled together. They are like the shingle of a sea-beach, or pebbles formed in the beds of torrents and rivers, which are carried down into the ocean wherever these descend from high grounds bordering a coast. There the gravel is spread

s been buried in the earth by natural causes. Now the remains of animals, especially of aquatic species, are found almost everywhere imbedded in stratified rocks, and sometimes, in the case of limestone, they are in such abundance as to constitute the entire mass of the rock itself. Shells and corals are the most frequent, and with them are often associated the bones and teeth of fishes, fragments

forms characteristic of lakes and rivers. Hence it is concluded that some ancient

o leave behind it, here and there upon the surface, scattered heaps of mud, sand, and shingle, with shells confusedly intermixed; but the strata containing fossils are not superficial deposits, and do not simply cover the earth, but constitute the entire mass of mountains. Nor a

mits that all fossiliferous strata were successively thrown down from water, is yet wholly inadequate to explain the repeated revolutions which the earth has undergone, and the signs which the existing continents exhibit, in most regions, of having emerged from the ocean at an era far more remote than four thousand years from the present time. Ample proofs of these reiterated revolutions will be given in the sequel, and it will be seen that many distinct sets of sedimentary strata, each several hundreds or thousands of feet thick, are piled one upon the other in the earth's crust, each containing peculiar fossil animals and plants which are distinguishable with few exceptions from species now living. The ma

and internal, may nevertheless be grouped together as having a common origin. They have all been formed under water, in the same manner as modern ac

ess perfect on many of their summits. These cones are composed moreover of lava, sand, and ashes, similar to those of active volcanos. Streams of lava may sometimes be traced from the cones into the adjoining valleys, where they have choked up the ancient channels of rivers with solid rock, in the same manner as some modern flows of lava in Iceland have been known to do, the rivers either flowing beneath or cutting out a narrow passage on one side of the lava. Although none of these French volcanos have been in activity within the period of history or tradition, their forms are often very perfect. Some, however, have been compared to the mere skeletons of volcanos, the rains and torrents having washed their sides, and removed all the loose sand and scori?, leaving only the harder and m

cily, the Tuscan territory of Italy, the lower Rhenish provinces, and Hungary, where spent volcanos may be seen

Giant's Causeway, called basalt, is volcanic, because it agrees in its columnar structure and mineral composition with streams of lava which we know to have flowed from the craters of volcanos. We find also similar basaltic and other igneous rocks associated with be

stion must be enlarged upon more fully in the chapters on Igneous Rocks, in which it will also be shown, that as different sedimentary formations, containing each their characteristic fossils, have been deposited at successive periods, so also volcanic sand and scori? have been thrown out,

we can neither assimilate to deposits such as are now accumulated in lakes or seas, nor to those generated by ordinary volcanic action. The members of both these divisions of rocks agree in being highly crystalline and destitute of organic remains. The rocks of one division have been called plutonic, comprehending all the granites and certain porphyries, which are

e analogy of the rocks in question to others now in progress at the surface. The result, however, may be briefly stated. All the various kinds of granite, which constitute the plutonic family, are supposed to be of igneous origin, but to have been formed under great pressure, at considerable depths in the earth, or sometimes, perhaps, under a certain weight of incumbent water. Like the lava of volcanos, they have been melted, and have afterwards cooled and crystallized, bu

as this is continually the case with the volcanic rocks, they have been styled, from this peculiarity, "overlying" by Dr. MacCulloch; and Mr.

ment to those of sedimentary formations, and are therefore said to be stratified. The beds sometimes consist of an alternation of substances varying in colour, composition, and thickness, precisely as we see in stratified fossiliferous deposits. According to the Huttonian theory, which I adopt as most probable, and which will be afterwards more fully explained, the materials of these strata were originally deposited from water in the usual form of sediment, but they were subsequently so altered by subterranean

ently called plutonic, because it appears to have been developed in those regions where plutonic rocks are generated, and under similar circumstances of pressure and depth in the earth. Whether hot water or steam permeating stratif

dition of the Principles of Geology (1833), the term "Metamorphic" for the al

rmations, whether stratified or unstratified, earthy or crystalline, with or without fossils, were alike regarded as of aqueous origin. At that period it was naturally argued, that the foundation must be older than the superstructure; but it was afterwards discovered, that this opinion was by no means in every instance a legitimate deduction from facts; for the inferior parts of the earth's crust have often been modified, and even entirely changed, by the influence of volcanic and other subterranean causes, while superimposed formations have not been in the slightest degree altered. In other words, the destroying and renovating processes have given birth to new rocks below, while those above, whether crystalline or fossiliferous, have remained in their an

ronological import, and must express, on the one hand, some peculiarity equally attributable to granite and gneiss (to the plutonic as well as the altered rocks), and, on the other, must have reference to characters in which those rocks differ, both from the volcanic and from the unaltered sedimentary strata. I proposed in the Principles of Geology (first edition, vol. iii.), the term "hypogene" for this purpose, derived from ?πο, under, and γινομαι, to be, or to be born; a word implying the theory that granite, gneiss, and the other crystalline formatio

ing their origin from particular causes, and having a certain composition, form, and position in the earth's crust, or other characters both positive and negative, such as the presence or absence of organic r

in reference to those characters which are not chronological, and the

img

Contents

Chapter 1 ON THE DIFFERENT CLASSES OF ROCKS. Chapter 2 AQUEOUS ROCKS—THEIR COMPOSITION AND FORMS OF STRATIFICATION. Chapter 3 ARRANGEMENT OF FOSSILS IN STRATA—FRESHWATER AND MARINE. Chapter 4 CONSOLIDATION OF STRATA AND PETRIFACTION OF FOSSILS. Chapter 5 ELEVATION OF STRATA ABOVE THE SEA—HORIZONTAL AND INCLINED STRATIFICATION. Chapter 6 DENUDATION. Chapter 7 ALLUVIUM. Chapter 8 CHRONOLOGICAL CLASSIFICATION OF ROCKS. Chapter 9 ON THE DIFFERENT AGES OF THE AQUEOUS ROCKS. Chapter 10 CLASSIFICATION OF TERTIARY FORMATIONS.—POST-PLIOCENE GROUP. Chapter 11 NEWER PLIOCENE PERIOD.—BOULDER FORMATION.
Chapter 12 No.12
Chapter 13 NEWER PLIOCENE STRATA AND CAVERN DEPOSITS.
Chapter 14 OLDER PLIOCENE AND MIOCENE FORMATIONS.
Chapter 15 UPPER EOCENE FORMATIONS.
Chapter 16 No.16
Chapter 17 CRETACEOUS GROUP.
Chapter 18 WEALDEN GROUP.
Chapter 19 DENUDATION OF THE CHALK AND WEALDEN.
Chapter 20 OOLITE AND LIAS.
Chapter 21 No.21
Chapter 22 TRIAS OR NEW RED SANDSTONE GROUP.
Chapter 23 PERMIAN OR MAGNESIAN LIMESTONE GROUP.
Chapter 24 THE COAL, OR CARBONIFEROUS GROUP.
Chapter 25 No.25
Chapter 26 OLD RED SANDSTONE, OR DEVONIAN GROUP.
Chapter 27 SILURIAN GROUP.
Chapter 28 VOLCANIC ROCKS.
Chapter 29 No.29
Chapter 30 ON THE DIFFERENT AGES OF THE VOLCANIC ROCKS.
Chapter 31 No.31
Chapter 32 No.32
Chapter 33 PLUTONIC ROCKS—GRANITE.
Chapter 34 ON THE DIFFERENT AGES OF THE PLUTONIC ROCKS.
Chapter 35 METAMORPHIC ROCKS.
Chapter 36 No.36
Chapter 37 ON THE DIFFERENT AGES OF THE METAMORPHIC ROCKS.
Chapter 38 MINERAL VEINS.
img
  /  1
img
Download App
icon APP STORE
icon GOOGLE PLAY