Rules and Practice for Adjusting Watches by Walter J. Kleinlein
Rules and Practice for Adjusting Watches by Walter J. Kleinlein
Only since the introduction of the compensation balance which received its most substantial early experiments as recently as the year 1859, has it been possible to control the variation in pocket timepieces which is caused by changes in temperature. Previous to this introduction it was not uncommon for the best watches to vary as much as two or three minutes with changes of forty or fifty degrees Fahr.
Through experiment and improvement in the quality and application of balance materials, such advancement has been made, that this variation has been reduced to seconds and temperature adjusting is now quite universal in the production of medium and high grade watches.
In the large factories, girls and young men of very little previous experience are frequently taught to make the alterations and to do the testing, while men of experience in watchmaking handle only the more intricate cases such as "stoppers" and radical rates that may require investigation of the inner workings of the movement. The simplicity of the adjustment naturally becomes more apparent with experience and the general alterations consist merely of transferring the balance screws in opposite pairs, either forward or backward one or more holes, according to the extent of the correction desired.
As these alterations are quite positive the adjustment can be undertaken with considerable certainty of obtaining results in every instance.
The repairer will not find as much daily necessity for understanding temperature adjusting as he will for being thorough in Position adjusting. The subject is covered, however, for the benefit of those who may desire practical experience in this branch of adjusting and also for those who desire a general knowledge of the details.
2.How to Place Screws When the Rate is Either Slow or Fast in Heat Compared to Cold.
If a watch rates slow in heat compared to cold it is necessary to shift screws in opposite pairs out toward the cut or free end of the rims; because when the metals expand the hairspring becomes weaker and produces a loss in time. During this period the free ends of the balance rims, carrying the transferred weight are forced toward the center and produce a gaining rate which compensates for the loss caused by the weakened spring.
As the metals contract in cold the free ends of the balance are drawn outward from their true form and the concentrated weight of these screws near the ends reduces the fast rate in cold and in principle works both ways in its action on the rate.
Should the circumstances be just opposite, or the rate be fast in heat compared to the rate in cold, it will be necessary to move the screws away from the free end of the rims. In doing this, less weight will be carried toward the center as the free ends curl inward and as a result, the rate in heat will become slower and the slow rate in cold will be reduced.
3.Composition of and Distortions of Compensation Balances.
Compensation balances are generally made of one layer of brass and one of steel, with the brass on the outside consisting of about three-fifths of the total thickness and the steel on the inside consisting of about two-fifths. These metals are firmly soldered together and the distortions in changes of temperature are as follows. In heat both metals expand, which infers that the rims become longer as well as wider and thicker. Brass expands more than steel and because of its attachment to the steel it cannot continue to lengthen in its true circular form, due to the fact that the steel does not become enough longer to maintain the true curve, and the result is that the free ends of the rims are forced inward.
In cold the brass, contracting more than the steel, pulls the rim outward at the free end which is just in reverse of the operations in heat.
The end of the rim which is attached to the balance arm always moves in the opposite direction from the free end, or outward from the center of balance, when the free end moves in, and inward when the free end moves out. In comparison, however, this movement is negligible as will be noted later in the results obtained in moving screws in that direction.
4.Tests and Experiments.
It is generally understood that the purpose of the compensation balance is to act in opposition to the error caused principally by the hairspring. The steel hairspring having no compensating qualities, either grows stronger or weaker with changes in temperature. When it becomes longer, wider and thicker in heat, experiments seem to prove that the increased width and thickness are not in proportion to the increased length, for if they were, the spring would actually be stronger; while timing proves that it is weaker because of the loss in time. In cold the shortening factor seems to dominate because of a gain in time.
In a series of tests with steel springs on uncut steel brass balances, the temperature error in the extremes of 40 degrees and 90 degrees Fahrenheit was found to be from eighty to one hundred and sixty seconds. With the same balances cut the error was reduced from seventy to one hundred and thirty seconds in each instance, without any correction of the balance screws.
A former test with palladium springs on the same balances, previous to having been cut, showed a considerably reduced error, indicating that the steel springs were mainly responsible for the temperature variations.
The above tests were in actual practice and results are given as noted, regardless of scientific or established formula relating to the cubic measurement of metals in changes of temperature.
5.Effect of Shifting Screws to Different Locations.
As a rule compensation balances generally have five or six pairs of balance screws in addition to two pairs of mean time screws. High grade Swiss and some American models do not have mean time screws and are therefore generally supplied with seven or eight pairs of balance screws. The mean time screws are never disturbed in making alterations for temperature, such alterations being confined to the balance screws only and the mean time screws are reserved for timing.
For appearance sake the balance screws should be evenly distributed, although it is necessary at times to closely assemble them to obtain temperature results and they should not be disturbed in making ordinary repairs, as the adjustment may be destroyed in so doing. With the larger balances the moving of one pair of screws for a distance of one hole, generally makes a difference of four or five seconds in the temperature rate. In the case of smaller balances this alteration does not make as much difference, although the weight and location of the screws has considerable influence on the result.
A pair of screws shifted from the second holes from the cuts, to the holes adjoining the cuts, will generally make a correction four or five times as great as would be obtained by shifting a pair of screws from the third to the fourth holes from the arms. The same proportional difference is obtained in moving a pair of screws from the center of the rims out to the cut, compared to moving a pair of screws from the holes nearest the arms out to the center of the rims. This principle also obtains in moving the screws in the opposite direction and is due to the fact that while the metals composing the balance follow the common laws of expansion and contraction, the balance actually becomes smaller in area during expansion and larger during contraction. This condition is made possible entirely through joining the metals in proper proportion and then cutting the rims.
In the factories where large quantities of a particular model having a standard style balance are handled, tests are usually made to determine as to just what degree of correction will be obtained by shifting various pairs of screws certain distances. This information is then used in making alterations with considerable certainty. The expert temperature adjuster becomes fully informed as to the peculiarities of various models and is capable of getting larger percentages of watches within the limits of allowance, after making alterations, than he could obtain otherwise.
Through understanding the various models individually, he is also enabled to furnish information that will cause intelligent arrangement of the balance screws, for each model, when they are originally fitted. The production thereby showing a greater yield of good watches that do not require alterations after the first test.
6.Permanency of the Temperature Adjustment.
When the original temperature adjustment has been carefully executed it is quite permanent and unless the screws have been mutilated or changed in location there will seldom be an occasion for readjusting. The balance may be retrued and repoised many times and the spring may be retrued, altered, or even changed, without seriously interfering with the temperature rating, as long as the screws are not shifted. In changing the spring, however, it is necessary that the same number of coils and the same size of spring be used, as otherwise readjusting would be required.
* * *
For eight years, Cecilia Moore was the perfect Luna, loyal, and unmarked. Until the day she found her Alpha mate with a younger, purebred she-wolf in his bed. In a world ruled by bloodlines and mating bonds, Cecilia was always the outsider. But now, she's done playing by wolf rules. She smiles as she hands Xavier the quarterly financials-divorce papers clipped neatly beneath the final page. "You're angry?" he growls. "Angry enough to commit murder," she replies, voice cold as frost. A silent war brews under the roof they once called home. Xavier thinks he still holds the power-but Cecilia has already begun her quiet rebellion. With every cold glance and calculated step, she's preparing to disappear from his world-as the mate he never deserved. And when he finally understands the strength of the heart he broke... It may be far too late to win it back.
Life was a bed of roses for Debra, the daughter of Alpha. That was until she had a one-night stand with Caleb. She was sure he was her mate as determined by Moon Goddess. But this hateful man refused to accept her. Weeks passed before Debra discovered that she was pregnant. Her pregnancy brought shame to her and everyone she loved. Not only was she driven out, but her father was also hunted down by usurpers. Fortunately, she survived with the help of the mysterious Thorn Edge Pack. Five years passed and Debra didn't hear anything from Caleb. One day, their paths crossed again. They were both on the same mission-carrying out secret investigations in the dangerous Roz Town for the safety and posterity of their respective packs. Caleb was still cold toward her. But as time went on, he fell head over heels in love with her. He tried to make up for abandoning her, but Debra wasn't having any of it. She was hell-bent on hiding her daughter from him and also making a clean break. What did the future hold for the two as they journeyed in Roz Town? What kind of secrets would they find? Would Caleb win Debra's heart and get to know his lovely daughter? Find out!
Five years into marriage, Hannah caught Vincent slipping into a hotel with his first love-the woman he never forgot. The sight told her everything-he'd married her only for her resemblance to his true love. Hurt, she conned him into signing the divorce papers and, a month later, said, "Vincent, I'm done. May you two stay chained together." Red-eyed, he hugged her. "You came after me first." Her firm soon rocketed toward an IPO. At the launch, Vincent watched her clasp another man's hand. In the fitting room, he cornered her, tears burning in his eyes. "Is he really that perfect? Hannah, I'm sorry... marry me again."
"You need a bride, I need a groom. Why don't we get married?" Both abandoned at the altar, Elyse decided to tie the knot with the disabled stranger from the venue next door. Pitying his state, she vowed to spoil him once they were married. Little did she know that he was actually a powerful tycoon. Jayden thought Elyse only married him for his money, and planned to divorce her when she was no longer of use to him. But after becoming her husband, he was faced with a new dilemma. "She keeps asking for a divorce, but I don't want that! What should I do?"
Five years of devotion ended when Brynn was left at the altar, watching Richard rush to his true love. Knowing she could never thaw his cold heart, Brynn walked away, ready to start over. After a night of drinking, she woke beside the last man she should ever cross-Nolan, her brother's arch-enemy. As she tried to escape, he caught her, murmuring, "You kissed me all night. Leaving isn't an option." The world saw Nolan as cold and distant, but with Brynn, he indulged her every desire. He even bought her a whole village and held her close, his voice low, deep, and endlessly tempting, his robe falling open to reveal his toned abs. "Want to feel it?"
The day Raina gave birth should have been the happiest of her life. Instead, it became her worst nightmare. Moments after delivering their twins, Alexander shattered her heart-divorcing her and forcing her to sign away custody of their son, Liam. With nothing but betrayal and heartbreak to her name, Raina disappeared, raising their daughter, Ava, on her own.Years later, fate comes knocking when Liam falls gravely ill. Desperate to save his son, Alexander is forced to seek out the one person he once cast aside. Alexander finds himself face to face with the woman he underestimated, pleading for a second chance-not just for himself, but for their son. But Raina is no longer the same broken woman who once loved him.No longer the woman he left behind. She has carved out a new life-one built on strength, wealth, and a long-buried legacy she expected to uncover.Raina has spent years learning to live without him.The question is... Will she risk reopening old wounds to save the son she never got to love? or has Alexander lost her forever?
© 2018-now CHANGDU (HK) TECHNOLOGY LIMITED
6/F MANULIFE PLACE 348 KWUN TONG ROAD KL
TOP
GOOGLE PLAY